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Introduction

In the standard model of particle physics and cosmology, the most
studied fields (which are massive) are spin O, %2, 1, and 2.

Spin 0 scalar ¢ L= —%((%)2 ~ V(¢

Spin 2 spinor W L=—-Uy"9, ¥ —mIbW

Spin 1 vector A, L= WP —mP A, AP

4

Spin 2 tensor g,,, L =+—gR — m2u(ga f)
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There have been many attempts for constructing dark energy
models in the framework of scalar-tensor theories.

Spin O case

Most of them belong to the so-called Horndeski theories.

Most general scalar-tensor theories with
S= [ d'zy/=gL . .
g second-order equations of motion

L = Gy, X)+Gs(¢, X)O¢ + Gu(d, X)R — 2G4 x (¢, X) [(O¢)* — ¢ ¢,y |

+G5(8, X) G ™ + 3G, x(6, X)UO8)° — 3OP) by ™ + 266" ",

Single scalar field ¢ with X = ¢"”0,,¢0, ¢

Horndeski derived this action at the age of 25 (1973).

R and G, are the 4-dimensional Ricci scalar and the Einstein tensors, respectively.

e General Relativity corresponds to G4 = Mgl /2.

e Horndeski theories accommodate a wide variety of gravitational theories

like Brans-Dicke theory, f(R) gravity, and covariant Galileons.
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Horndeski’s paper in 2016 (at the age of 68)
arXiv:1608.03212

Now, Horndeski wants to construct
Lagrange Multipliers scalar-tensor theories with third-order

equations of motion.
and

Usually, such higher-order theories are
prone to Ostrogradski instability with
a Hamiltonian unbounded from below.
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What happens for a vector field instead of a scalar field ?

(i) Maxwell field (massless) Spin 1 case

: 1
Lagrangian: Lp = —ZFWFW

There are two transverse polarizations (electric and magnetic fields).

(11) Proca field (massive)

: 1 1
Lagrangian: Lp = ——F, F" — §m2AMA“

Introduction of the mass m of the vector field A,, allows The Electric and Magnetic Flelds

the propagation in the longitudinal direction due to the
breaking of U(1) gauge invariance.

2 transverse and 1 longitudinal ~
=3 DOFs

Longitudinal
propagation
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Generalized Proca theories

On general curved backgrounds, it is possible to extend the massive Proca
theories to those containing three DOFs (besides two tensor polarizations).

Heisenberg Lagrangian (2014) See also Tasinato (2014)

Ly =Ga(X,FY),
L3 = G3(X)V, A",
Ly =Gy(X)R+ Gyx(X) [(V,A*)2 = V,A4,V° A7]

1
Ls = G5(X)G,, V*+AY — gGs,X(X)[(V“A“):’" — 3V, APV ,A,V AP + 2V ,A, VT APV A,

—g5(X )F WEFP uvaAﬂ, } Intrinsic vector
1 Y
Ls = Ge(X)LM PV, A,V o Ag + §G6,X(X)F05F“”VQA”V/3AV, mode

1
where X = —§A,LA“, F= _EF‘“’FW’ Y = A¥AYF,°F,,

1 ~ 1
LHveB — Ze“"p"eam&Rpms, FHY = ie“"aﬁFaﬂ

The non-minimal derivatives couplings like G4(X )R are required
to keep the equations of motion up to second order.

Taking the scalar limit A* — VH#m, the above Lagrangian recovers
a sub-class of Horndeski theories (with Lg vanishing).



De Felice et al,

"
JCAP 1606, 048
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Can we realize a viable cosmology with the late-time acceleration?

Vector field:  A* = (¢(¢),0,0,0)  (which does not break spatial isotropy)

Variation of the Heisenberg action with respect to g, on the
flat FLRW background leads to

Go — G x¢* — 3G3 xH¢® + 6G1H? — 6(2G4 x + Gy xx¢*)H?¢* + G5 xx H>¢° +5G5 x H>¢* = pyr
G2 — $6°Gs x + 2G4 (3H? + 2H) — 2Ga x ¢ (3H¢ + 2Hd + 2H¢) — 4G4 x x H ¢’
+ G5 xx H2¢¢* + G5 x HY*(2H¢ + 2H?¢ + 3H$) = —Pyy .

The matter density pps and the pressure Py obey the continuity equation
pm + 3H (prr + Py) =0
Variation of the action with respect to A* leads to

¢ (Go,x +3Gs xHo + 6Gy x H? + 6Gy xx H2$> — 3Gs x H3¢p — G5 xx H3¢?) = 0.

The branch ¢ # 0 gives the solution where ¢ depends on H alone, which
allows the existence of de Sitter solutions with constant ¢ and H.
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Vector Galileons

The Lagrangian of vector Galileons which recover the Galilean symmetry in
the scalar limit (A, — 0,m) on the flat space-time is given by

2

M
Go(X) =bX, Gs(X)=bsX, GuX)= Tpl F X2, Gs(X)=0bs X2

We substitute these functions into the vector-field equation:

Gox + 3G xHo+6Gy xH?> +6Gy xxH*¢* —3Gs xH>¢ — G5 xx H>¢> =0

Taking note that X = ¢?/2, the background EOM admits the solution
¢H = constant.

Y

The temporal component ¢ is small in the early cosmological epoch,
but it grows with the decrease of H.

The solution finally approaches the de Sitter attractor characterized by
¢ = constant, = H = constant.



Phase-space trajectories for vector Galileons
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The de Sitter fixed point (c) is always
stable against homogeneous perturbations,
so it corresponds to the late-time attractor.

The dark energy equation of state

wpr 1S —2 during the matter era.
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This behavior 1s the same as a tracker
solution of scalar Galileons, which is

in tension with the observational data
(Nesseris, De Felice, ST, 2010).



Planck constraints on constant dark energy equation of state

Marginalized posterior distribution for
the constant equation of state (2013)

—  Planck+WP+BAO —  Planck-++WP+SNLS
—  Planck+WP+Union2.1 —  Planck+WP For the flat FLRW the bounds are
' ' —— . w = —1.13%02
1.0 F : . (95 %, Planck + WP + BAO)
|
0.8 | | : w = —1.13%
| (95 %, Planck + WP + SNLS)
N 0T | w=—1.247018
A (95 %, Planck + WP+ H))
0.4 | | .
I
0.2 - The equation of state
| —1.3 <w<—-038
0.0 ! ! |

50 -16 —-1° —08 04 is allowed from the data.
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Generalizations of vector Galileons

Let us consider the case in which ¢ is related with H according to
¢ oc H™! (p > 0)

This solution can be realized for

2

M
Go(X) = b XP?,  Gs(X) =b3XP?,  Gu(X) = Tpl F b XPr, Gs(X) =bsXP5

where
. ] The vector Galileon
p3 = §(p+2p2—1) ,  pa=p+tpa, ps= 5(3]?-1-21?2—1) .| === corresponds to
p2=p=1.
The dark energy and radiation density parameters obey
., = (14 5)Qe3 + Q. — 3QpE) There are 3 fixed points:
14+ sQ ’
Q,[1-0 +8(3Di 45)QpE] — (@) (Bow. ) = (0.
Q. = —— - : (b) (Qpm, ) = (0,0)

1+ sQpg (¢) (Qpg, Q) =(1,0)

D2
where S=—.
p



The dark energy equation of state

(a) wpg = —1 — 4s/3 in the radiation era,
WDE = iy ;; 58 . — (b) wpg = —1 — s in the matter era,
3(14 sQprw) (¢) wpg = —1 in the de Sitter era
-0.80 I L o AL L L L o
For smaller s = ps /p close to 0, ol E%g%ill//zs ]
wpg = —1 — s approaches —1. \ '
-1.2
The joint data analysis of SNIa, b T smallers
CMB, and BAO give the bound = ‘
S e |
0<5<0.36 (95%CL) > S N
(De Felice and ST, 2012) 18
20 |
For larger p the field Qb [ Vector Galileons
evolves more slowly as 22 r
$ oc H- /P so wpg e L e
approaches —1. 0.1 1 10 100 1000 10* 10° 10°

141z
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Cosmological perturbations in generalized Proca theories

We need to study perturbations on the flat FLRW background to study

(1) Conditions for avoiding ghosts and instabilities,
(11) Observational signatures for the matter distribution in the Universe.

In doing so, let us consider the perturbed metric in flat gauge:
ds® = —(1+ 2a) dt* + 2 (0;x + Vi) dtdz" + a*(t) (0;; + hi;) dw'da? |
where «, x are scalar perturbations, V; and h;; are the
vector and tensor perturbations, respectively, obeying
0'V; =0,
O'hij =0,  h'=0.
We also consider the perturbations of the vector field, as
AY = () + 9,
. 1 ..
A = 0 Oy +E)
where 0¢ and vy are scalar perturbations, while £ is
the vector perturbation obeying 0’ E; = 0.
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Tensor perturbations : 2 Dofs

There are two polarization modes hy and hyx for the tensor perturbation:

hij = h+e + hxe

Expanding the Heisenberg action up to second order in tensor
perturbations, the resulting second-order action is given by

2 ar c7
¢ =% /dtd3xa3—[ a—g’(ahy],

A=+, X
where
qr = 2G4 — 2¢°Gyx + Hp G5 x
s 2G4+ ¢2€5G5,X
CT = .
qr

The tensor perturbation obeys (in Fourier space)

fi + (3H+q—T

: 5 k2
h —hx =0
QT) A+CTG2 ’

The ghost and instability can be avoided for
qr > 0, x>0
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Vector perturbations : 2 Dofs

Besides the vector field, we take into account a single perfect fluid described
by the Schutz-Sorkin action:

S = - / d'z [V=gpar(n) + J*(0ul + A10,B1 + A20,B)]
Related with the number density, as Scalar part Vector part

n = \/J"‘Jﬁgaﬁ/g

After integrating out the matter action, introducing the combination
Z; = E; + ¢(t)V;, and finally taking the small-scale limit, the
resulting vector action (for two dofs 771, Z3) reads

2
k2
S‘(E) o~ Z/dtd?’a:aqTV (Zf + EC%/Zf) :
i=1

where
qv =1 —2c2Gy x — 2doH G5 x

??(2G4.x — G5 x Hp)? n d2G5 x (Hop — @) .

2
cir=14+
v 2qrqv qv
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Scalar perturbations : 2 Dofs (1 scalar +1 matter)

The second-order Lagrangian for scalar perturbations is given by

Sooon k2L L S L S
L? =a? (XtKX + 5 X'GX - X MA - XtBX) : Xt = (¢, 5pn1) .

where 1 = xv + ¢(t)x and dpys is the matter perturbation.

If the two eigenvalues of the 2 x 2 matrix K are positive, the ghosts
are absent. One of them is pps + Py > 0, and another is

a® H?qr (3w? + 4qrwy)
¢* (w1 — 2ws)?
In the small-scale limit, the dispersion relation is given by

Qs =

k2
det (wQK — —2G> =0
a
One of the solutions is the matter propagation speed squared,

while another one is

s = % {2 wiws(par + Par) — ws(wy — 2ws) [wiwz + ¢(wy — 2ws)we] <¢5/¢ — H) — ws (w3 — witiz)

+ ¢ (w1 — 2wg)2 [w3w6 + ¢(2wzwr + wg)] + wiws [w1w2 + (w1 — 2ws) (20 we — wng'b/gb)} } 9

where A = 8H?%¢%qrqvqs, and w; etc are the known from the background.



A model consistent with no-ghost and stability conditions

2

M
Go(X) =boX,  G3(X)=0b3XP,  Gu(X)= Tpl F b XP, Gs(X) =0,

Provided that 0 < 84 < 1/[6(2p + 1)], there exists the parameter space
in which all the theoretically consistent conditions are satisfied.

2 2 2
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Effective gravitational couplings for the cosmic growth

Under the quasi-static approximation on sub-horizon
scales, the matter perturbation obeys

SM —+ 2H5M — 47TGefpr5M ~ ()

where the effective gravitational coupling is

IRTEREE
f =T

De Felice et al,
PRD (2016)

& = 4n¢? (wa + 2Hqr)” |

w2

52:[H(w2+2H(]T)—w1+21b2+pM]¢2_q_2’
-

1

Y EF )

2
- Z—iwz {wep(we + 2Hqr) — wa(ws — QHQT)}:| :

1207 {gswarin — (wa — 2Hgr i) + prrws[3wz(we + 2Hgr) — s}

3 is positive under the no-ghost and stability conditions

(which enhances the gravitational attraction).

For smaller gy close to 0, there is a tendency that G.g decreases.
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Planck constraints on the effective gravitational coupling
and the gravitational slip parameter Ade et al (2015)

Got /G and @ /¥ are assumed to be constant.

DE-related
T T T
Planck

Planck+BSH m
Planck+WL

Guw/G=1

44
Planck+WL+BAO/RSD Strong
‘_I' gravity
o
3
Weak
gravity
4
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Weak gravity ?

The recent observations of redshift-space distortions (RSD) measured the lower growth
rate of matter perturbations lower than that predicted by the LCDM model.

Macaulay et al, PRL (2014)

0.55
~ Z
= 05 - Planck LCDM fit
o
=045 el Tl 4 el TeRn Tension between
% Planck and RSD data
m i
04
= _
z \ RSD fit
65 0.35 o ranek ACDM 1
B LRG
i
03 IIIIIIIIIIIIIIIII VI YIP%TRSI |
0 0.2 04 0.6 0.8 1
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De Felice et al,

Weak gravity in generalized Proca theories 160505066 2016)

Gog is modified through the intrinsic vector mode through the quantity ¢y .

For a massive vector field with Gy = F + m?X we have

qv =1 —4gsHo +2GsH” + 2Gg, x H* ¢*

Effect of the intrinsic vector mode

or smaller ¢y approaching 0, al -
I a) q,,=0.
the effect of the vector field s b Eb))qi=3-015
: -=-= () q,=0.
tends to reduce the ; @ ay=001
. . . 14 N (e) qV=0.0001 N,
oravitational attraction. | Smaller ¢
g 13 —
: : i T | =1/2, p=5/2, Bs = 10~
It is possible to see signatures T o — 005 o2 O )|
of the intrinsic vector mode

. . uLEvo
1n observations. : :

1.0 R ‘4._,,,1:: .

090 |
0.1 1 10 100 1000




Observational signatures in red-shift space distortions (RSD)

From the RSD measurement we can constrain the growth rate of
matter perturbations: f = 9,,/(Hd.).

=10 e
oo obt - 08 =082 po maller gy, the values
H Qv=0.001 —— I of fog tend to be smaller.
0.55 | . ]

N The present fog data alone
g . ] are not sufficient to distinguish
 ous [ 1 between the models with

SENCIE. T | different gy .

040 [ 4 i
035 | | P This situation will be

improved in the future.
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Conclusions and outlook

1. Generalized Proca theories give rise to interesting cosmological solutions
with a late-time de Sitter attractor.

2. We derived 6 no-ghost and stability conditions associated with tensor,
vector, and scalar perturbations for theconsistency of the theory.

3. We constructed a class of models in which all the theoretically
consistent conditions are satisfied during the cosmic expansion history.

4. We also derived the effective gravitational coupling that can be
used to put observational constraints on the models.

It will be of interest to put observational constraints on the
viable parameter spaces for our proposed models.




